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ABSTRACT 

It is proved that the space of functions constant on vertical lines is not com- 
plemented in the space of all measurable functions on the unit square (with 
the topology of convergence in measure). The analogous result is proved for 
the space of all measurable functions on the product of two probability spaces, 
one of which is atomless. 

A. Pelczynski has raised the interesting question of  whether there is a con- 

tinuous projection f rom the measurable (real or complex-valued) functions on 

the unit square onto those on the unit interval; he conjectured that there is 

none. We establish that conjecture and also the generalization to products of  

probability spaces. 

We note that, as measure spaces, the unit square and the unit interval are 

isometric and therefore S 2, the space of  (equivalence classes of) measurable 

functions on the square, is isometric to S, the space of measurable functions on 

the interval. Hence, identifying the space of measurable functions on the square 

which are constant on vertical lines with S, we will obtain (as an easy corollary) 

an uncomplemented subspace of S 2 which is isometric to S 2. 

We also note, for example, that  the Banach space Lo~ of essentially bounded 

functions on the square can be continuously projected onto the essentially bounded 
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functions constant on vertical lines by integrating with respect to the vertical 

coordinate. However, on 1~o integration is clearly discontinuous in the topology 

of convergence in measure. 

Recall that the topology of convergence in measure on S 2 is induced by the 

metric 

f Is- .(s,g) = +/S_gld , 

where /~ is two-dimensional tebesgue measure. We will simplify the exposition 

and notation by freely disregarding sets of measure zero; we will be dealing with 

countable processes only and therefore will encounter no difficulties by calling 

sets of measure zero "empty". At two places in the proof of Theorem 1 there are 

statements whose proofs are more or less routine. In order not to interrupt the 

exposition, we number these with superscripts and postpone the proofs to the end. 

THEOREM 1. There cannot exist a continuous projection P: S : ~ S  2 whose 

image consists of functions constant on vertical lines and which is the identity 

on such functions. That is, there is no continuous projection from the measurable 

functions on the square onto the measurable functions on the interval. 

PROOF. Let P denote the supposed projection. Arrange the set of rational 

subsquares of the square in a sequence {Wi), and define P, a set-valued function 

on the measurable subsets of the square, by 

P(E) = 0 Support P[z(E ~ Wi)]. 
i = 1  

(As usual, ~(A) denotes the characteristic function of A.) Thus, P(E) is the union 

of the supports of the images of a sequence of functions which span a dense 

subspace of the space of functions supported in E. It follows that if Support 

f c  E, Pfvanishes off P(E). The use of the {W~} is just to prevent sets of measure 

0 from accumulating over an uncountable index set. We could use a more eco- 

nomical choice of sets than the (W~} in our proof, and indeed this is required in 

the general case treated in Theorem 2; however, in the present case the expository 

convenience compensates us for the mathematical redundancy. 

We now note that if we can find a set K of measure a so that/~[P(K)] = b, then 

we can find a function f whose support is included in K and hence is of measure 

at most a and such that/~ (Support Pf) = b. (Recall that/~ is two-dimensional 
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Lebesgue measure.) Indeed, ~i71 ~x(K n Wi) will have that property when each 

0~, is chosen so that anP[x(K n Wn)] ~ E~'-~ cqP[x(K ~ Wi)] holds everywhere on 

the supports of these functions, except for a set of measure zero. The ~, are chosen 

as rapidly decreasing as is necessary to guarantee convergence in measure of 
oo p oo ~ = 1 ai()~(K n W~); they are also chosen so that ~ = t ~i;((K n Wi) is never zero 

on P(K).(1 

Hence if we can find a sequence {K,} of measurable sets such that/a(K,) ~ 0 

but #[P(K,)] -~ 0, we can by the above remark find a sequence f ,  ---) 0 in S 2 but 

such that Pf,-~ 0 in S 2. Indeed, associate to each K, a function f ,  as described 

above. Then {[t,f,}, for sufficiently rapidly growing scalars {fin}, will provide 

such a sequence. (Note that for a fixed measurable function g, 

lim f i d/~=~ t (Support g).) 
m --o, oO 

We now come to the main part of the proof, the construction of a set K, of 

measure 1/n but such that /~[P(K,)] = 1. A rough description of K, may be 

useful. The square is partitioned into n horizontal strips F j, 1 <__ j < n, each of 

height 1/n. For each of the first n - 1 strips, say the jth, an "invariant" vertical 

strip F~ is found, invariant in the sense that P(F 7 r F j) ~ F~.. The strips F~ 

are pairwise disjoint. Most important, our construction of the invariant strips F~ 

guarantees that F, =I2\  ,-  ~ oo oo I J~=~ Fj is itself an invariant strip (where 12 denotes 

the unit square). The set K, is then defined to be U3=t (F~ ~ n Fs). 

We first describe a construction which associates to each measurable rectangle 

a countable partition of the vertical strip whose base coincides with that of the 

rectangle. Let R be a rectangle and let To be the vertical strip with the same base. 

Consider the nested set of substrips of To: 

T~ = P(R) ~ r o 

T,§ =P(T. nR) nTo. 

Set R ' =  N~oTi .  Then the strips {R~= T~\T~+I}, i =  0,1,..- together with R" 

form the countable partition described. A glance at the construction makes it 

clear that P(R~n R) n R~= if5 for i = 0,1, 2, ..-, and it is not hard to establish 

the invariance property of R~; even more, P(R" n R ) n T  0 = R ' .  Cz~ 
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Note that a union of R i will not in general have either of the above desirable 

properties. 

We now construct K,. First we partition the unit square into n horizontal 

strips F1, . . . ,F ,  each of h~ight 1 ]n. Th~ squ~re is divided into a countable number 

of vertical strips by applying the construction just de3crib~d to F1 (that is, F~ 

plays the role of R) to get F~ We set F t = F ~ .  Now apply the 

same construction to each of F ~ C~ F2, F I N  Fz,. . .  (but not to F~) and get a 

new countable partition, each vertical strip a substrip of one of the strips cons- 
oo j 

tructed at the preceding stage. W e s e t F ~  = Uj=o(F~ n F 2 )  "and arrange the 
i �9 remaining strips into a sequence F: ,  t = 0,1,2, . . . .  We now have/5(F~ N F2) = F~, 

(inclusion rather than equality is claimed here because we have no reason to assume 

that P[(FI O F:) ~] ~ F{), while P(F~nFI)  = F~ and P(FI t~ F:) nF~ = f~, 
no ao i 

for i =0,  1,2 . . . . .  Then F1,  F2,  {Fz}~=o form a partition of the square. 

We next apply the same construction to {F~nFa} and continue until we have 
co oo Qo l oo 

dealt with F ,_ t  and have thus obtained Ft  , F 2 , . . . , F , - ~ ,  {F,,-~}~=o forming a 

countable partition of the square. Figure 1 schematically illustrates the con- 

struction for the case n = 3. 

2 I 

, IN| 

Fig. 1. Because of the complexity of the 
diagram we have made no indication of the 
infinite collections of sets that occur and 
labeled only a few of the sets that are indicated. 

Now we use the fact that P is a projection by noting that P)~(F~_ 1) = z(F~,- 1) 
and so P(F,-O ~ F , - v  But we observe that for j = 1 , . . . , n - 1 ,  we have 
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P(F~n_t n F j )  n Fin_~ = ~ because F,~_I was so constructed for r ,_~  and is a 

substrip of a strip satisfying this relationship for j < n - 1 .  Hence 
i i dO i I..J~=oF,_ 1, union of all P(Fn-I n F , ) ~  F,_ t and so Fff = the the strips that 

have not already appeared as Fj ~ for j < n - l, is itself an invariant strip for F,. 

We now have the following collection of n measurable rectangles, each of 

height 1In lying in disjoint vertical strips: F1 n F~, F 2 A F t ,  ..., F , n  F~. 

Recall that F~ ~ is a vertical strip whose measure we do not know, but F~ is a 

U . horizontal strip of measure 1/n. We note that P(F~ nF~ ~176 D F~ . Then/~( ~=~ 

(F~ n F~)) = 1/n but/5[U~=~ (F i n F~)] = U~'= lFi ~, the entire square. 

If we repeat this construction for each n and let K,--U~'=l (F~nF~) 

(a different set of (F~} for each n) we see that K, is a sequence of sets whose 

measure approaches zero, but with the property that t t[ /5(K,)]=l.  This is the 

sequence we undertook to construct and whose existence contradicts the assumed 

continuity of P. This completes the proof of Theorem I. 

Theorem 1 has the following generalization: 

THEOREM 2. Let X1,X 2 be probability spaces (measure spaces with a positive 

measure of total mass 1). Let S' denote the space of measurable functions on 

X 1 x X 2 with the topology of convergence in measure. Then if and only if  X2 

has an atom can there exist a continuous projection P: S ' ~ S '  whose image 

consists of functions constant for fixed X 1 coordinates and which is the identity 

on such functions. That is, there is a projection from the measurable functions 

on X1 xX2 onto the measurable functions on Xt  if  and only if  X 2 has an 

atom. 

PROOF. The proof is the same as that of Theorem 1 with one major exception 

if the measure spaces are nonseparable, we must search for a replacement for the 

sequence {W~}. However, we once again break up X~ x X z into the n "horizontal"  

strips F1,...,F,, each of measure 1In (by virtue of X2 being atomless) and we 

consider, for example, A,,, the countable algebra generated by the supports of the 

successive applications of P to z(Fi), and the sets that so arise. Replace P by /~ 

defined by/~(E) = Ua~a.Support PX(EnA) and proceed as before. This algebra 

is big enough to allow us to achieve P(EIP(E))nEIff(E)= ~ for any set E 

arising in our construction. We conclude the proof of Theorem 2 by noting that 

if X2 has an atom at Yo then pf(x,y) =f(x, yo) is a suitable P. 
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Proofs of superseripted statements 

PROOF OF 1. We first treat the case of finitely many functions. We assert 

that if h:, ..., h, are in S 2 and A~ = Support hi, then  there is a linear com- 

bination of hi, "" h, whose support is [-J~=l Ai (except for a set of measure 0). 

By induction, it is sufficient to prove this when n = 2. If X is any uncountable set 

of real numbers, for each ~GX let Z~ be the intersection of the zero set of 

hi + ~h2 and Support h2. The sets Z~, ~ ~ X, are pairwise disjoint, so for at least 

one ] ~ X ,  p(Z,) = 0. The desired linear combination is then hi + ]~hz. 

Now suppose that h~ = Pg~ and it is desired to find a series ~% 1 ~gi  convergent 

i n measure such that Support [-Y~i~ihi] = Ui~l  Support hi. If  ~1, "",~, have 

been chosen (by the above) so that Support [~i"= 1 ~ihl] = Ui%l Support hi, then 

there are positive numbers e. and 3. such that ] Y~'= ~ oqhil > e. on [..jni=l Support hi 

except for a set of measure ~., with ~. 7 0 .  Then ~.+ l, ~.+2, "", each of which 
may be chosen from all but a countable set of scalars, may be chosen to satisfy 

~,~,+le ihi[  < e,,/2 on I..J~'= I Support hi except for a set of m e a s u r e  O n. The C~n 

can also be chosen to converge to zero rapidly enough so that Y:~=~c~gg~ is con- 

vergent in measure. We leave further details to the reader. 

PROOF OF 2. We note by virtue of (1) that continuity of P implies that for any 

sequence E,,, #(E,)  ~ 0 ~ p[P(E,)]  ~ O. Since T i = R ~ and p(Ti \  R ~) ~ O, we see 

that p [ P ( ( T , \ R  ~) c3 R)] --* 0. But /3(T~ c3 R) = R ". Therefore /5(R" C3 R) = R ". 

The reverse inclusion is obvious. 
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